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NEW FACTORIZABLE DISCRETIZATIONS FOR THE EULER EQUATIONS

BORIS DISKIN* AND JAMES L. THOMAS'

Abstract. A multigrid method is defined as having textbook multigrid efficiency (TME) if solutions to
the governing system of equations are attained in a computational work that is a small (less than 10) multiple
of the operation count in one target-grid residual evaluation. A way to achieve TME for the Euler and Navier-
Stokes equations is to apply the distributed relaxation method thereby separating the elliptic and hyperbolic
partitions of the equations. Design of a distributed relaxation scheme can be significantly simplified if the
target discretization possesses two properties: (1) factorizability and (2) consistent approximations for the
separate factors. The first property implies that the discrete system determinant can be represented as a
product of discrete factors, each of them approximating a corresponding factor of the determinant of the
differential equations. The second property requires that the discrete factors reflect the physical anisotropies,
be stable, and be easily solvable.

In this paper, discrete schemes for the nonconservative Euler equations possessing properties (1) and (2)
have been derived and analyzed. The accuracy of these scheme has been tested for subsonic flow regimes
and is comparable with the accuracy of standard schemes. TME has been demonstrated in solving fully

subsonic quasi-one-dimensional flow in a convergent/divergent channel.
Key words. Euler equations, textbook multigrid efficiency, distributed relaxation, factorizable schemes
Subject classification. Applied and Numerical Mathematics

1. Introduction. Full multigrid (FMG) algorithms [3, 4, 13, 22, 26, 27] are the fastest solvers for
elliptic problems. These algorithms can solve a general discretized elliptic problem to the discretization
accuracy in a computational work that is a small (less than 10) multiple of the operation count in one
target-grid residual evaluation. Such efficiency is known as textbook multigrid efficiency (TME) [5, 6].
Extending TME to solutions of the Navier-Stokes equations is a challenging task because the Navier-Stokes
equations form a system of coupled nonlinear equations that is not fully elliptic, even for fully subsonic flow,
but contains hyperbolic partitions. TME for the Navier-Stokes simulations can be achieved if the different
factors contributing to the system could be separated and treated optimally, e.g., by multigrid for elliptic
factors and by downstream marching for hyperbolic factors. One of the ways to separate the factors is the
distributed relazation method proposed in [3, 4]. The general framework for achieving TME in large-scale
computational fluid dynamics (CFD) applications has been discussed in [9, 25].

The major difficulty in efficiently solving the Navier-Stokes equations is encountered with the inviscid
(Euler) subset; thus we restrict ourselves to the Euler equations here. The approach to the solution of
the Euler equations motivating this paper is based on an FMG algorithm with multigrid cycles employing
distributed relaxation. It is envisioned that the FMG-1 algorithm (an FMG algorithm with one multigrid
cycle per level) will provide solutions with algebraic error below the level of the discretization error. Another

useful characteristic of the solution process is the possibility to rapidly converge residuals to the machine zero.
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The latter property is not necessary for achieving TME, but it is highly favored in practical applications.

The distributed relaxation approach relies on a principal linearization of the governing system of non-
linear equations. The principal linearization is derived from the full Newton linearization by removing some
unimportant (subprincipal) terms. The principal terms of a linear scalar equation are the terms that make
major contributions to the residual per a unit change in the solution variable. The principal terms thus
generally depend on the scale, or mesh size, of interest. For example, the discretized highest derivative terms
are principal on grids with small enough mesh size. For a discretized system of differential equations, the
principal terms are those that contribute to the principal terms of the determinant of the matrix operator.

Design of a distributed relaxation scheme for the Euler equations can be significantly simplified if the
target discretization possesses two properties:

(1) The principal linearization of the target discrete system is factorizable [4, 5, 6, 19, 20], i.e., the
discrete system determinant can be represented as a product of discrete scalar factors, each of them
approximating a corresponding factor of the determinant of the differential equations.

(2) The obtained scalar factor discretizations reflect the physical anisotropies and are stable and easily
solvable.

The main subject of this paper is derivation of new discrete schemes for the nonconservative Euler equations
possessing properties (1) and (2). Corresponding conservative discrete schemes and distributed relaxation
for them have been considered in [15].

Properties (1) and (2) are automatically obtained with staggered-grid discretizations for incompressible
and slightly compressible flow. Textbook efficient multigrid solvers employing factorizable staggered-grid dis-
cretizations of the nonconservative formulations and distributed relaxation have already been demonstrated
for high-Reynolds-number viscous incompressible [11, 24] and subsonic compressible [23] flow regimes.

Factorizable schemes for the conservative Euler equations on collocated grids have been derived and
implemented in [17, 18, 19, 20, 21]. The multigrid solvers in these references employed Collective Gauss-
Seidel rather than distributed relaxation. The subsonic-flow convergence rates observed in multigrid V cycles
were quite fast (about 0.3 per cycle), far overcoming the theoretical limit for nonfactorizable schemes, and
were only slightly grid dependent. However, these rates are still not fast enough to guarantee convergence
in an FMG-1 algorithm. The rates also deteriorate somewhat in transonic and supersonic computations and
for grids with high aspect ratios. These facts emphasize the need to employ distributed relaxation.

This paper explores new collocated-grid schemes for the compressible Euler equations that satisfy prop-
erties (1) and (2) in multiple dimensions. A typical difficulty associated with this type of scheme is a
poor measure of h-ellipticity (stability) in the discrete approximation for the full-potential factor of the
system determinant. By definition (see [2, 4, 26]), a discrete scalar (not necessarily elliptic) operator
L[u] possesses a good measure of h-ellipticity, if the absolute value of its symbol |L(w)| is well sepa-
rated from zero for all high-frequency Fourier modes. The operator symbol is defined as the operator
response on a discrete Fourier mode: L[e!W4)] = L(w)e!Wd), where j = (Ja»Jy,J-) are the grid indexes
and w = (wg,wy,w:),0 < |wy|, |wyl|, |ws| < 7 are normalized Fourier frequencies. For elliptic operators,
high-frequency Fourier modes are the modes satisfying max(|w,|, |wy|, |w-|) > m/2; for nonelliptic operators,
high-frequency Fourier modes are those oscillating in the characteristic directions.

Lack of h-ellipticity often implies inefficient relaxation (i.e., a poor smoothing factor for some high-
frequency error components) and slow convergence rates in multigrid cycles. Several approaches to overcome
the difficulty (mainly in applications to incompressible flow equations) have been proposed (e.g., [1, 10]).

Some of the approaches are associated with introduction of additional terms increasing the measure of



h-ellipticity, others with averaging spurious oscillations.

The factorizable schemes for multidimensional compressible flow equations proposed in this paper in-
clude a mechanism to improve the h-ellipticity measure by obtaining any desired discretizations for the
full-potential factor. TME with an FMG solver employing the distributed relaxation method has been
demonstrated for two schemes approximating the Euler equations for a quasi-one-dimensional subsonic flow
in a convergent/divergent channel.

The paper is organized as follows: The Euler equations for inviscid compressible flow problems are de-
fined in Section 2. The idea of distributed relaxation is briefly explained in Section 3. Section 4 presents the
derivation of the new factorizable schemes for the Euler equations. A model problem, the one-dimensional
subsonic Euler equations, is presented in Section 5 together with a comparative analysis of linear discretiza-
tion schemes. Description of the multigrid solver ingredients is in Section 6 followed by results of nonlinear
numerical tests with a subsonic flow in a convergent/divergent channel reported in Section 7. Section 8

contains concluding remarks.

2. Euler Equations. The steady-state three-dimensional Euler system of compressible flow equations

can be written as

uOyu + vOyu + wo u + %&Up =0,
u0yv + v0yv + w:v + LIyp =0,
(2.1) R(q) =< ud,w + viyw + wd,w + %azp =0,
pc?d,u + pc?dyv + pc? 0w + udyp + vyp + wd.p =0,
éaxu-i— %8?,11-{— %82w+u8me+v8ye+waze =0.

where the primitive variables, q = (u,v,w,p,€)T, represent velocity, pressure, and internal energy, and are

related to the density, p, and the speed of sound, ¢, through the following equations:

(2.2) p=(y—1)pe,
(2.3) ¢ =p/p,

where v is the ratio of specific heats.
In an iterative (quasi-Newton) procedure, the correction §q = q"*! —q", where n is an iteration counter,

can be computed from the equation

(2.4) Ldéq = —R(q),

where L is the principal linearization of the operator R(q). Thus,

Q 0 0 23 0
0 Q 0 19, 0
(2.5) L= 0 0 Q ;0. 0|,
pc?d,  pctd, pcd. Q 0
£, %9, %9. 0 Q

where Q = 40, + 99, + W, = (u- V), and the coefficients u = (4, 7,w), p, and ¢* are evaluated from the

approximation q" and, for the current iteration, are considered as constants unrelated to the target primitive



variables. The determinant of the matrix operator L is
(2.6) Q*[Q* - 4],

where A is the Laplace operator. The convection operators, @, and the full-potential operator, Q% — 2 A,

represent hyperbolic and elliptic partitions of the Euler equations.

3. Distributed Relaxation. The distributed relaxation method for the Euler equations replaces dq
in (2.4) by M dw, where

100 —28; 0
010 -39, 0
(3.1) M=|001 —59. 0|,
000 @ O
000 0 1

so that the resulting matrix L M becomes lower triangular, as

0 0 0 0 0
0 0 0 0 0
(3.2) LM=| o0 0o Q 0 0.
pc*d,  pcd, pctd, Q* —cAA 0
o, 2o, 0. -ZA Q
and
(3.3) LMdéw = —R(q).

The main diagonal of L M is composed of the factors of the matrix L determinant. The distributed relaxation
approach yields fast convergence if the constituent scalar diagonal operators in L M are solved with efficient
methods.

An efficient solver for the convection factor, @), can be based on downstream marching, with additional
special procedures for recirculating flows [11, 12, 16, 28]. The full-potential factor, @ —c2A, is an operator of
variable type, and its solution requires different procedures in subsonic, transonic, and supersonic regions. In
subsonic regions, the full-potential operator is uniformly elliptic; therefore standard multigrid methods yield
optimal efficiency. When the Mach number approaches unity, the operator becomes increasingly anisotropic
and, because some smooth error components cannot be approximated adequately on coarse grids, classical
multigrid methods severely degrade. In supersonic regions, the full-potential operator is uniformly hyperbolic
with the stream direction serving as the time-like direction. In this region, an efficient solver can be obtained
with a downstream marching method. However, downstream marching becomes problematic when the
Mach number drops towards unity, because marching steps allowed by the stability condition are too short.
Thus, a special procedure is required to provide an efficient solution for transonic regions. A possible
procedure [7, 8, 14] is based on piecewise semicoarsening and some rules for adding dissipation at the coarse

grid levels.

4. Discrete Equations. Having in mind the distributed relaxation procedure outlined in the previous
Section 3, one would like to design a discretization for nonlinear operator R(q) of (2.1) that has the discrete

principal linearization operator, Ly, satisfying properties (1) and (2) listed in Section 1. For nonconservative



formulations, the discretization of the nonlinear operator directly follows Ly. Derivation of conservative
discretization schemes corresponding to a given discrete principal-linearization operator has been discussed
in [15].

In this section, we consider two factorizable discretizations for the matrix operator L of (2.5): the basic

and an improved discretization, Ly,. The basic collocated-grid discretization LP . of

. . . h
discretization , L basic

basic?

the matrix operator L is defined as

Qr 0 0 %89’; 0
0 Q" 0 %ag 0

(41) L}‘t:asic = 0 0 Qh %6:? 0 ’
pc?dr  pc?d}  pc*dl Q" 0

2 2 2
c” ah c” ah c” ah h
S Lok Zoh 0 Q

where the discrete derivatives, 9%, 8{}, 9", in all off-diagonal positions are the second-order accurate central-
differencing approximation. All the diagonal terms, Q", except Q" in the fourth equation, are discretized
with the same second-order accurate upwind (or upwind-biased) discretization scheme. In the subsonic
regime (|i|?> = @2 + 02 + w? < ¢?), the term Q" is discretized with a second-order accurate downwind (or

downwind-biased) discretization.

The determinant of the matrix operator Lgasic is given by
3 _
(42) (Qh) [Qth _ C2A2h] ,

where A%" is a wide (with mesh spacing 2h) discretization of the Laplace operator. The full-potential
operator approximation appearing in the brackets has two major drawbacks:

(1) The approximation is not h-elliptic, i.e., it admits spurious oscillatory solutions for the discrete
homogeneous equation.

(2) For near-sonic regimes (Mach number M = |u|/c & 1), the discrete operator stencil does not reflect
the physical anisotropies of the differential full-potential operator. The discrete operator exhibits
very strong coupling in the streamwise direction, while the differential operator has strong coupling
only in the cross-stream directions.

An improved discrete full-potential operator can be obtained if the discretization Q" is changed to

Q" + A". Then the discrete full-potential operator in (4.2) becomes

(43) 7_—h — Qh.Ah + Qth _ CZAZh.

If the operator A" is second-order small (proportional to h?), the overall second-order discretization accuracy
is not compromised. The choice of A" used here is A" = (Qh)_th,Dh = Fh —(Q"Q" — 2 A", where
F" is a desired approximation for the full-potential factor. We do not discuss in this paper the optimal
discretization for the multidimensional subsonic full-potential operator. Note only that it is possible to
construct a discretization that satisfies the following properties:
(1) For subsonic Mach numbers, the discretization is h-elliptic; in the limit of the zero Mach number, it
is dominated by the narrow (with mesh spacing h) h-elliptic Laplace operator.
(2) For the Mach number approaching unity, the discretization correctly reflects the physical anisotropies
and tends to the optimal discretization for the sonic-flow full-potential operator (see [7, 8, 14]).
(3) For supersonic Mach numbers, the discretization becomes upwind (or upwind-biased) and can be

solved by marching.



The operator A" is a nonlocal operator acting on p” and can be introduced through a new auxiliary

variable ¢ = A"p" and a new discrete equation Q" = D"p". Thus, the new vector of discrete unknowns

becomes q® = (u”, v®, wh, " p" e")T. The discrete operator L

b is changed to Ly, such that

basic
Q" 0 Lot 0 ]
h 1 ah
0 Q ;ay 0
0 0 h Lok 0
(4.4) L, = @ Pz
0 0 0 QY —-Dr 0
pc;@g’} p{fa{} pfaf Q" 0
| Ca 2o 2 0 0 @t
The corresponding distribution matrix, My, is defined as
(1.0 00 298 0]
1 ah
01 00 an 0
0 010 Laph ¢
(4.5) My = Pz ,
0001 D o0
0000 Q" o0
|00 0 0 0 1 J
so that the resulting matrix Ly My becomes lower triangular as
[ Qn 0 0 0 0 0 |
0 Q" 0 0 0 0
0 0 h 0 0 0
(4.6) Lp,M; = @ N
0 0 0 Q 0 0
pc?ol  pc?d)  pcol Fh 0
c2 ah c® gh c® ah c® A2h h
L 50 59 S0 AT Qh |

5. One-Dimensional Model Problem. The set of the quasi-one-dimensional nonconservative Euler

equations is given by

uOgu + %azp = 0,
(5.1) pcOyu + udyp = —ypule,
(v = 1)edru +udpe = —(y—1)eul,

where o(z) is the area distribution. The principal linearization of the operator in (5.1), in the limit as h
tends to zero, is

o, %896 0
pc20, wd, 0 )
(y=1)éd, 0 ad,

(5.2)

in which the coefficients @, p, ¢, and € are constants unrelated to the unknown functions (u,p,€). The third
equation is decoupled from the other equations. Thus, for the purpose of analysis, one can focus on the

system of two constant-coefficient equations

(5.3) Lq="f,



where

(5.4) L= ( “fm o0: ) ,
pcc0y U0,
f = (f1, f2)T, and q = (u,p)T. For the subsonic flow regimes, a natural set of boundary conditions for this
model problem is u specified at the inflow boundary and p specified at the outflow boundary. With this set
of boundary conditions, the differential problem (5.3) is well posed.
The analysis presented in this section compares the exact differential and discrete solutions for v and p
obtained for the model problem (5.3). Let the exact solution of (5.3) defined on the interval z € [0,1] be

Uexac Cu iow
(55) qexact(m) = ( ‘ > = ( > e,
Pexact Cp

where « is an arbitrary frequency. Then

f , f uCy, + 1C
(5.6) f@) ) _ () s LA T B T
fQ('T) f2 f2 pc Cu+ucp
The system (5.3) is subject to boundary conditions

(5.7) u(0) = Cy, p(1) = Cpe'®.

The distribution matrix M,

_1
(5.8) m= (b 7% )
0 ad,

results in

(5.9) LM = w0 .
pct0, F

The main diagonal of matrix LM is composed of the convection operator @0, and the full-potential operator
F = (4% — ¢?)8,,. The one-dimensional problem is very specific for at least two reasons:

(1) The full-potential factor vanishes at the sonic speed (2 = ¢).

(2) The characteristics perfectly align with the grid.
Both these features disappear in multiple dimensions.

The corresponding discrete problem is defined on a uniform grid with mesh size h as
(5.10) Ly q" = fP,

where Ly, is a discretization of L, and g} = (u}, p?)" and £ = (f1(jh), f2(jh))" are discrete representations
of the solutions and source functions, respectively, and j = 0,1,2,..., N, N = 1/h. The general solution to
(5.10) can be sought as a combination of a particular solution and the general solution to the corresponding

homogeneous problem
(5.11) Ly q" = 0.

A particular solution can be found in the form

h U’gar
(5.12) Qpar = ; =
Ppar j

[~

> ezw]’

ST



(=33

(5.13) ( ) = (Tu(e™)) ( 2 )

where w = ah is a normalized frequency, and Ly, () is a generalized matrix symbol of the discrete operator Ly,.

3>

The entries of Ly, (A) are generalized symbols of the discrete scalar operators composing Ly, that are defined
as responses of these operators on the exponent function A, For example, the generalized symbol, 3¢(\), of

the central second-order accurate difference approximation to the first derivative, 9¢, is 9\ = (AN

0°(\) = 35 (A= %)
The general solution, q}'llom, of the homogeneous system of equations (5.11) is a combination of linearly

independent characteristic solutions z; = vk)\f;, where A are the roots of the characteristic polynomial

(5.14) det L () = 0.

(5]‘5) q}l110m = ( Uhom ) chzk ZCI»VI»A
J

phom
) et

Parameters ¢ are chosen to satisfy a set of discrete boundary conditions. The discretization error function

The general solution of the discrete problem (5.10) is

>

SN

(516) qh = q?om + q:)Iar = ZCka (.7) + (
k

is defined as

(5.17) q" - Qacts

where g .., is a restriction of Qexact () to the grid with the mesh size h.
Below, the discretization errors for four discrete factorizable schemes approximating (5.3) are compared:
Scheme # 1. The “basic” scheme of the (4.1) type.
Scheme # 2. The standard upwind discrete scheme.
Scheme # 3. The discrete scheme of the (4.4) type with the discretization for the full-potential

factor given as
(5.18) Fh = (a® - %) 90",

where the discrete operators, 3* and 9%, are second-order accurate upwind and downwind difference
approximations to the first derivative, respectively.
(4) Scheme # 4. The discrete scheme of the (4.4) type with the discretization for the full-potential

factor given as
(5.19) Fh = (a* - ) ot

where the discrete operator 9%, is a three-point central approximation to the second derivative.
All the schemes, except the standard upwind scheme (2), are factorizable in multiple dimensions. The
discrete boundary conditions for all the four schemes are overspecified, i.e., the discrete-solution values at
the boundary and, wherever necessary, outside of the target computational domain are specified from the

known exact solution (5.5).



5.1. Scheme # 1. The one-dimensional version of the “basic” collocated-grid discretization for matrix
operator L of (5.3) is defined as

(5.20) LY V) =",
(5.21) Lo | w0 o
' b ptoe aod |

Recall that the discrete derivatives, 9%, 9, and 8%, are second-order accurate upwind, central, and downwind

difference approximations, respectively.
)

The generalized symbol for the operator Lgll is defined as

(5.22) Lfll)(/\) _ ( ud*™(\) %360\) ) ,

pco¢(N)  adi(N)
where
"N = (B -2x+3%),
(5.23) ') = F(-3+22-3N),
0N = 7 (EA-133)
A particular solution to (5.20) is
ney
I .
(5.24) qV = e,
pa pb)
where
. adl(e*)i=10°(e™) f2
at) = ﬂzau(eim)3d(6im)p,cz(3c(eim))27
(5.25)
p(l) _ _—pcPd° () itud" (e*) fa

= W0 ()T (e) 2 (0 (e )2

A set of linearly independent characteristic solutions z(j) = vk/\i is given by

(5.26) V1=<(1)>andV2=<(l)>,

which corresponds to Ay 2> = 1;

1
(5.27) V3 = ( _pud*(A3) ) J

0°(Xs)

542 —c2—4uvu%—c?

3u2+c2

1
(5.28) Vi = ( _ puad“(Aa) >
0°(Aa)

. =2 __ .2 /2 A2
which corresponds to Ay = SE=CAlavE—C

The characteristic solutions zj are normalized to satisfy max|z;(j)| = O(1) as h tends to zero. The
i

which corresponds to A3 = ; and

characteristic solutions z; and zs correspond to solutions of the target differential problem; the characteristic



solutions zs and z4 are numerical artifacts. Note that in subsonic regimes, |A\s| = |A\4| = 1; this implies
existence of global discrete solutions that do not approximate solutions of the differential problem. These
spurious solutions are a source of instability of the discrete approximation (5.20). Details are given in
Appendix A. For stable approximations, characteristic solutions unrelated to the differential solutions should
be local, i.e., they should correspond to |A;| # 1. The coefficients ¢ are computed from a 4x4 linear system

that arises after substituting the general solution into the boundary condition equations

(i) ug = Cly,
50 i) #(Bub - 2f + Jult,) + & (4oh - 1ok) = fu(h),
) e 2 —
(i) 2 (Sul = bub ) + E(= 30y + 20k = Sphn) = (1= 1),
(iv) ph = Cpe'®,

where values u”;, pft, uf%, and pf | are specified from the exact solution (5.5).

5.2. Scheme # 2. A one-dimensional version of the standard upwind scheme for matrix operator L
of (5.3) is defined as

(5.30) Lq® =f",
_ o d a u— d
(5.31) L | NSRSt ot = 550
pC(ngC) ou — 06(376) o uTJrcau + %6‘1

The following four boundary conditions (two from the left and two from the right) are used by the
interior discretizations:

5.3) (i) guly+gply = (50wt 550p) e,
- (i) FuR, — QLpCp?Vﬁ-l = (5Cu - %pccp ew(N+1)
(iv) Luk - ghpl = (3Cu = 550, ) ™.
A particular solution can be found in the form
i(2)
2) u .
(533) qg)a)r — ( ﬁ(2) > ezwg,
where
L) _ (HFE0U () + R 00 () i— & (0 () - 5207 (7)) fo
U - (ﬁ2—62)8u(€i“’)8d(€i“’) )
(5.34)

L2 —pe(BEE0M () - B30t (e ) Fuk (BEE 0% (67) 455 0% () Fo
pe= (=2 ()57 (=) '

A set of linearly independent characteristic solutions z(j) = vk)\i is given by

(535) v1:<(1)>andv2:<(l)>,

which corresponds to Aj 5 = 1;

(5.36) vs = ( ' )
pc

10



which corresponds to A3 = %; and
_N 1
(5.37) vy = (\g)
—pc

which corresponds to Ay = 3. The characteristic solutions z; and z» approximate solutions of the differential
equations; the characteristic solutions zz and z4 are local. The discrete scheme (5.30) is stable. The

coefficients ¢ are found by substituting the general solution into (5.32).

5.3. Scheme # 3. A factorizable scheme corresponding to (4.4) is defined as

(5.38) LYq® =,
ao* 0 %66 uh f1(jh)
(539) L£13) = 0 ,aau _Dh ’ q(3) = wh ’ fh = 0 )
pcto¢ 1 ad? p" f2(3h)
(5.40) Dh = Fh _ (a%“&d — (80)2),

and the desired discrete full-potential operator is given by
(5.41) Fh = (a* - c¢*)9"o.

The overspecified boundary conditions, where values of w” |, ulf,u, u  ,,p", plt,p%, and p ., are
specified from the exact differential solution (5.5), and ", = ot = ot = 1/15(,_,_1 = 0, are equivalent to the

following six boundary conditions:

() uf = Cu,
(i) a0 uf + Lo°ph = fi(h),
=AU, b 'Dh h =

(5.42) (i) ub 1/}2 e >
(iv) ad%“y — D"ply =0,
(v)  pcocul_, + ¢k, +ud'pl_, = f2(1—h),
(vi) ph = Cpe'.

In evaluation of (v), the value of 9% _, is computed from the equation @0“%_, — D'ph,_, = 0.

A particular solution of the nonhomogeneous problem can be found as

a3
(5.43) a® = | 4@ |,
p3)
where
F3) — _ 1 (7 9°(e!) ((=pco(e’) i+ud (e’ :
) = ooty (i - 22 ( i ),
~ h iw L 2ac( iw\F o au(iw
(5.44) HB) = %u((eeiw)) ( pc?d (efl{jf;@ (e )f2) ’
—pc20°(e'?) 1+ 10" (e'“) .
13(3) — =pcto%( fztlzleit)a ( )fz‘
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The generalized symbols 9%()),d°()\), and 9%()\) are defined in (5.23) and

fh(A = (#*—c*)0 “( )a ),

(5.45) h(x) = (ac ' NOIN) = fz (4 — 4% +6- 40+ 1),

The six linearly independent characteristic solutions, z(j) = vi (j))\i, are given by

1 0 jh
(5.46) vi=| 0 |,va=| 0 |,andvs=] pc? (— — 1)
0 1 —jhpu
which corresponds to A3 =1,
h h
vi=| —phd°(\s) | = | %2pc?
0 0
(5.47) and
jh jh
vam | oot (EEGHE -00) —0r00) | = | o (2§ +4) .
—hpii ((A ] ~9hpii

which corresponds to Ay 5 = &, where 9(\) = + (21 — L) and d°(\) = L (11 + I)N);

and
h h
(5.48) ve =)V | —pcthoc(Ne) | =(e)™N | —2pc |,
—hpﬂg:((is)) —h%pﬂ

which corresponds to Ag = 3. The characteristic solutions are normalized to satisfy max |z, (j)| = O(1) for
J

h tending to zero.

5.4. Scheme # 4. Another factorizable scheme belonging to the family (4.4) is defined as

(5.49) LYq® =k,
where Lg:l) is similar to LE’) with the desired discretization for the full-potential factor given as
(5.50) Fh = (@ - c)ot,,

where 0" is a three-point central second-order accurate approximation to the second derivative. The vector-
function q(¥) is defined similar to q®).
A particular solution can be found in the form of (5.43) and (5.44) with the generalized symbols

Fr) = @ =)o) = Bt (4 -2+ 2),
DN = Fh) — (@20 (N)IT(N) — E@°(V)?) -

LEI) determinant operator computed before any cancella-

(5.51)

The “maximal-length footprint” stencil of the
tion occur includes seven points. Based on this stencil, the corresponding characteristic equation is formed

as

1 1 1
(5.52) + = —6— +12< —10+3/\+0/\2>:0.

AT T2 A
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For the characteristic equation, zero coefficients in the leftmost positions imply zero roots, and, in the
rightmost positions, they imply infinite roots. Six roots of equation (5.52) are A1 23 = 1, Ay = %, A5 = 0,
and \g = c0.

The solution representation as a linear combination of the functions z; = vy /\i is relevant only for finite
Ax # 0. For Ax = 0, the corresponding characteristic solutions are localized at the inflow boundary, i.e., they
exhibit nonzero values at the inflow and are zero in the interior and at the outflow boundary. By analogy,
characteristic solutions which corresponds to A\ = oo are localized at the outflow boundary, i.e., they are
nonzero only at some locations in the vicinity of the outflow boundary.

Four linearly independent characteristic solutions which corresponds to finite (nonzero) A can be found

in the usual form z;(j) = vk)\i.

1 jh
(553) V] = 0 , Vo = 0 , and V3 = p (az _ C2)
0 1 —jhpt
correspond to A1 23 =1, and
h h
(5.54) vi=| —hpd (M) | =| zpc
0 0

corresponds to Ay = %

The characteristic solution zs localized at the inflow (i.e., corresponding to A5 = 0) is
h 6"
. —=2 2
(5.55) ()= | sl |,
puh 6]1.

and the characteristic solution zg localized at the outflow (i.e., corresponding to A\g = 00) is

N—1
o 322(2{(:2 N—-2
(5.56) 26(j) = | —pRZi o2 |,
—3pih oY

where

0, if j
(5.57) gm=4 m#J

1, if m=j.
Coefficients cg, k = 1,...,6 can be found by substituting the general solution into the boundary condition

equations that are similar to (5.42) with discretization D" (5.40) corresponding to F" defined in (5.50).

5.5. Discretization Errors. In this section, the L., norms of discretization errors in p for Schemes # 1
through # 4 are compared for the constant-coefficient problems corresponding to different Mach numbers
(M =0.01,0.5,0.99, and M* = 4/ % ~ 0.88). The value of M* has been chosen to illustrate an erratic
convergence history for the Scheme # 1. More details are given in Appendix A. The constant coefficients

nondimensionalized with respect to the density and the speed of sound at the sonic conditions are defined as

[ 142zt
C = m,
(5.58) p = c%’

u = cM,
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